A Layered Architecture for Erasure-Coded Consistent Distributed Storage

نویسندگان

  • Kishori M. Konwar
  • N. Prakash
  • Nancy A. Lynch
  • Muriel Médard
چکیده

Motivated by emerging applications to the edge computing paradigm, we introduce a two-layer erasure-coded fault-tolerant distributed storage system offering atomic access for read and write operations. In edge computing, clients interact with an edge-layer of servers that is geographically near; the edge-layer in turn interacts with a back-end layer of servers. The edge-layer provides low latency access and temporary storage for client operations, and uses the back-end layer for persistent storage. Our algorithm, termed Layered Data Storage (LDS) algorithm, offers several features suitable for edge-computing systems, works under asynchronous message-passing environments, supports multiple readers and writers, and can tolerate f1 < n1/2 and f2 < n2/3 crash failures in the two layers having n1 and n2 servers, respectively. We use a class of erasure codes known as regenerating codes for storage of data in the back-end layer. The choice of regenerating codes, instead of popular choices like Reed-Solomon codes, not only optimizes the cost of back-end storage, but also helps in optimizing communication cost of read operations, when the value needs to be recreated all the way from the back-end. The two-layer architecture permits a modular implementation of atomicity and erasure-code protocols; the implementation of erasurecodes is mostly limited to interaction between the two layers. We prove liveness and atomicity of LDS, and also compute performance costs associated with read and write operations. In a system with n1 = Θ(n2), f1 = Θ(n1), f2 = Θ(n2), the write and read costs are respectively given by Θ(n1) and Θ(1) + n1I(δ > 0). Here δ is a parameter closely related to the number of write operations that are concurrent with the read operation, and I(δ > 0) is 1 if δ > 0, and 0 if δ = 0. The cost of persistent storage in the back-end layer is Θ(1). The impact of temporary storage is minimally felt in a multiobject system running N independent instances of LDS, where only a small fraction of the objects undergo concurrent accesses at any point during the execution. For the multi-object system, we identify a condition on the rate of concurrent writes in the system such that Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]. PODC ’17, July 25-27, 2017, Washington, DC, USA © 2017 Association for Computing Machinery. ACM ISBN 978-1-4503-4992-5/17/07. . . $15.00 https://doi.org/10.1145/3087801.3087832 the overall storage cost is dominated by that of persistent storage in the back-end layer, and is given by Θ(N ).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Non-MDS Erasure Code Scheme for Storage Applications

This paper investigates the use of redundancy and self repairing against node failures indistributed storage systems using a novel non-MDS erasure code. In replication method, accessto one replication node is adequate to reconstruct a lost node, while in MDS erasure codedsystems which are optimal in terms of redundancy-reliability tradeoff, a single node failure isrepaired after recovering the ...

متن کامل

Optimistic Erasure-Coded Distributed Storage

We study erasure-coded atomic register implementations in an asynchronous crash-recovery model. Erasure coding provides a cheap and space-efficient way to tolerate failures in a distributed system. This paper presents ORCAS, Optimistic eRasure-Coded Atomic Storage, which consists of two separate implementations, ORCAS-A and ORCAS-B. In terms of storage space used, ORCAS-A is more efficient in s...

متن کامل

On repairing erasure coded data in an active-passive mixed storage network

Citation Oggier, F., & Datta, A. (2015). On repairing erasure coded data in an active-passive mixed storage network. International journal on information and coding theory, 3(1). Abstract: A major change has been recently witnessed in networked distributed storage systems (NDSS), with increased use of erasure codes in lieu of replication for realizing data redundancy. Yet, both the industry and...

متن کامل

Erasure-Coded Byzantine Storage with Separate Metadata

Although many distributed storage protocols have been introduced, a solution that combines the strongest properties in terms of availability, consistency, fault-tolerance, storage complexity and the supported level of concurrency, has been elusive for a long time. Combining these properties is difficult, especially if the resulting solution is required to be efficient and incur low cost. We pre...

متن کامل

A Solution to the Network Challenges of Data Recovery in Erasure-coded Distributed Storage Systems: A Study on the Facebook Warehouse Cluster

Erasure codes, such as Reed-Solomon (RS) codes, are being increasingly employed in data centers to combat the cost of reliably storing large amounts of data. Although these codes provide optimal storage efficiency, they require significantly high network and disk usage during recovery of missing data. In this paper, we first present a study on the impact of recovery operations of erasure-coded ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017